infoegehelp.ru

Успешно сдать ЕГЭ по информатике
  • Главная
  • Контакты
  • Карта сайта
  • Помощь сайту
Важно
  • Демо варианты ЕГЭ
  • Учим числа: 2 в степени
  • Биты, байты, килобайты
Решение задач
  • Задачи вне основных разделов информатики
Разделы информатики
  • 2011-12-18-14-33-54Системы счисления
  • 2011-12-18-16-45-20Алгебра логики
  • 2011-12-18-16-55-26Программирование
  • 2011-12-18-16-53-40Кодирование информации
  • 2011-12-18-16-56-19Компьютерные сети и Интернет
  • -excelЭлектронные таблицы (Excel)
  • 2011-12-18-16-57-50Базы данных
  • 2011-12-18-16-58-50Графы
  • 2011-12-18-17-00-15Файловая система
  • Устройство компьютера
  • ПО компьютера
Алгебра логики Диаграммы Эйлера-Венна

Диаграммы Эйлера-Венна

Диаграмма Эйлера-Венна - наглядное средство для работы со множествами. На этих диаграммах изображаются все возможные варианты пересечения множеств. Количество пересечений (областей) n определяется по формуле:

n=2N,

где N - количество множеств.

Таким образом, если в задаче используется два множества, то n=22=4, если три множества, то n=23=8, если четыре множества, то n=24=16. Поэтому диаграммы Эйлера-Венна используются в основном для двух или трех множеств.

Множества изображаются в виде кругов (если используется 2-3 множества) и эллипсов (если используется 4 множества), помещенных в прямоугольник (универсум).

Универсальное множество (универсум) U (в контексте задачи) - множество, содержащее все элементы рассматриваемой задачи: элементы всех множеств задачи и элементы, не входящие в них.

Пустое множество Ø (в контексте задачи) - множество, не содержащее ни одного элемента рассматриваемой задачи.

На диаграмме строят пересекающиеся множества, заключают их в универсум. Выделяют области, количество которых равно количеству пересечений.

Диаграммы Эйлера-Венна также используются для визуального представления логических операций.

Разберем примеры построения диаграмм Эйлера-Венна для двух и трех множеств.

Пример 1

Пусть есть следующие множества чисел:

А={1,2,3,4}

В={3,4,5,6}

Универсум U={0,1,2,3,4,5,6}

Диаграммы Эйлера-Венна для двух множеств А и В:

Диаграмма Эйлера-Венна для двух множеств

Определим области, и числа которые им принадлежат:

А
B
Обозначение
области
Числа
0
0
0)
0
0
1
1)
5,6
1
0
2)
1,2
1
1
3)
3,4

Пример 2

Пусть есть следующие множества чисел:

А={1,2,3,4}

В={3,4,5,6}

С={1,3,6,7}

Универсум U={0,1,2,3,4,5,6,7}

Диаграммы Эйлера-Венна для трех множеств А, В, С:

Диаграмма Эйлера-Венна для трех множеств

Определим области, и числа которые им принадлежат:

А
B
C
Обозначение
области
Числа
0
0
0
0)
0
0
0
1
1)
7
0
1
0
2)
5
0
1
1
3)
6
1
0
0
4)
2
1
0
1
5)
1
1
1
0
6)
4
1
1
1
7)
3

Пример 3

Пусть есть следующие множества чисел:

А={0,1,2,3,4,5,6,7}

В={3,4,5,7,8,9,10,13}

С={0,2,3,7,8,10,11,12}

D={0,3,4,6,9,10,11,14}

Универсум U={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

Диаграммы Эйлера-Венна для четырех множеств А, В, С, D:

Диаграмма Эйлера-Венна для четырех множеств

Определим области, и числа которые им принадлежат:

А
B
C
D
Обозначение
области
Числа
0
0
0
0
0)
15
0
0
0
1
1)
14
0
0
1
0
2)
12
0
0
1
1
3)
11
0
1
0
0
4)
13
0
1
0
1
5)
9
0
1
1
0
6)
8
0
1
1
1
7)
10
1
0
0
0
8)
1
1
0
0
1
9)
6
1
0
1
0
10)
2
1
0
1
1
11)
0
1
1
0
0
12)
5
1
1
0
1
13)
4
1
1
1
0
14)
7
1
1
1
1
15)
3

Если Вы хотите порешать типовые задач на множества, то перейдите к статье: "Как решать задачи с помощью диаграмм Эйлера-Венна". Там подробно разобрано 5 задач.

Перейти к разбору задач на множества из ЕГЭ по информатике:

  • В12-2012
  • В9-2011
  • В10-2010
  • В10-2009
 

Rambler's Top100

© Латыпова В.А., 2012-2020. Все права защищены.
Копирование материалов сайта только с разрешения администрации сайта